Mapping physiological states from microarray expression measurements
نویسندگان
چکیده
MOTIVATION The increasing use of DNA microarrays to probe cell physiology requires methods for visualizing different expression phenotypes and explicitly connecting individual genes to discriminating expression features. Such methods should be robust and maintain biological interpretability. RESULTS We propose a method for the mapping of the physiological state of cells and tissues from multidimensional expression data such as those obtained with DNA microarrays. The method uses Fisher discriminant analysis to create a linear projection of gene expression measurements that maximizes the separation of different sample classes. Relative to other typical classification methods, this method provides insights into the discriminating characteristics of expression measurements in terms of the contribution of individual genes to the definition of distinct physiological states. This projection method also facilitates visualization of classification results in a reduced dimensional space. Examples from four different cases demonstrate the ability of the method to produce well-separated groups in the projection space and to identify important genes for defining physiological states. The method can be augmented to also include data from the proteomic and metabolic phenotypes and can be useful in disease diagnosis, drug screening and bioprocessing applications.
منابع مشابه
Inferring Boolean network states from partial information
Networks of molecular interactions regulate key processes in living cells. Therefore, understanding their functionality is a high priority in advancing biological knowledge. Boolean networks are often used to describe cellular networks mathematically and are fitted to experimental datasets. The fitting often results in ambiguities since the interpretation of the measurements is not straightforw...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملMicroarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment
Trehalose is the non-reducing alpha-alpha-1, 1-linked glucose disaccharide. The biosynthesisprecursor of trehalose, trehalose-6-phosphate (T6P), is essential for plant development, growth,carbon utilization and alters photosynthetic capacity but its mode of action is not understood. In thecurrent research, 6 days old seedlings of Arabidopsis thaliana (Columbia ecotype) were grown inliquid cultu...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 18 8 شماره
صفحات -
تاریخ انتشار 2002